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J .  PHYS. A ( G E K .  P H Y S . ) ,  1969 ,  SER. 2,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Non-local gauge fields and Zilch 

A. L. BIRCH and J. S. DOWKER 
Department of Theoretical Physics, University of Manchester 
MS. yeceived 27th May 1969 

Abstract. The Yang-Mills gauge theory is applied to the space-time invariance 
groups responsible for the conservation of Zilch, with the result that non-local 
interactions are forced upon us. In this case, if there is also an internal symmetry 
group present, the Yang-Mills trick yields gauge fields which transform according to 
not only the regular representation of the group, but also all the representations whose 
coupling to the original fields is allowed by non-zero Clebsch-Gordan coefficients. 

1. Introduction 
The Yang-Mills (1954) method of introducing interactions by means of a generalized 

gauge principle is now formally well understood since the general discussions of Utiyama 
(1956), Kibble (1961) and many others (e.g. Bludman 1955, Shima 1964, Lubkin 1963, 
Sokolik and Konopleva 1965, Loos 1965, Ikeda and Miyachi 1956). 

The basic idea is simply to make the parameters of an invariance group functions of 
space-time and to restore the resulting loss of invariance by the introduction of compensat- 
ing fields. For example, coordinate-dependent phase transformations lead to the electro- 
magnetic field, while the gravitational field emerges when coordinate-dependent Lorentz 
transformations are considered. 

It thus seems reasonable, whenever we have an invariance group, to enquire what sort 
of interaction is introduced as a compensation if we make the parameters functions of 
position. If the interaction so introduced does not occur in nature, further doubts would be 
cast on the logical status of the gauge principle but not, of course, upon its interest and 
utility. 

In  this paper we wish to discuss these questions for the invariance group (or groups) 
responsible for the Zilch-type conserved quantities discussed first by Lipkin (1964) and 
elaborated by, for example, Kibble (1965), Fairlie (1965), Fradkin (1965) and Steudel(196.5). 

Roughly speaking, we may say that the generators of the appropriate groups are products 
of the generators of the inhomogeneous Lorentz group (Steudell966, 1965, Dowker 1968). 
Typically, invariance under the transformation of a scalar field p(x) 

with 

yields the conserved Zilch-like quantity (for massless fields) 

gov = 2pa,avlgahp - 3S,U,(avao)a,y8ay - a,a,ga,)e~p + aa’pavao,aap) 

where the permutation sum conecrns just p, v and U. 

2. Basic ideas and calculation 
We shall restrict ourselves to scalar fields and to invariance groups generated by products 

of displacement operators. Thus, under the displacement xu -+ x” + u’, ‘p suffers the change 
6,y given by 

Invariance of the theory under this transformation leads to the conserved energy- 
momentum tensor. Vow, with Steudel (1966), we generalize (1) to 

Soy(%) = a”C?,y(x) +~a%z”,aVy(X) + ga”avap8”a”aR’p(x) + ... . (1) 

S0y(x) = a”a,y(x)+a””8,avcp(x) +a”vP?iIava,’p(x)+ .., (2) 
624 
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where the a,.- are independent parameters. It can be shown, and it will be proved later, 
that the usual scalar (Klein-Gordon) theory is invariant under the ‘odd derivative’ terms 
in this transformation and a series of conserved Zilch-like quantities thus results. 

In  accordance with our previous remarks, we now make the a,... functions of space-time 
and investigate how to restore the lost invariance. 

Instead of using the infinite series (2) we shall write, equivalently, 

60y(x) = J A(%, ~ ’ ) c p ( ~ ‘ )  dx’ = - 1 h ( x , x  - x’)y(x - x’)dx‘ (3) 
the integration being over all space-time. A Taylor series expansion of y(x-x’) in the 
integrand of (3) gives expressions for the a,... as moments of il. 

Any particular term or set of terms in the series (2) can be eliminated by an appropriate 
choice of 21. Thus the even derivatives disappear if we have the antisymmetry condition 

A(x, x-x’) = -A(%, x+x’). (4) 
If the a,... are constants, A(x ,  x’) is a function of x-x’ only. 
I t  is seen that the analysis is a generalization of the usual one (e.g. Utiyama 1956) to the 

non-local case. Or we could say that the indices of the ‘internal’ symmetry group have 
become continuous and are the space-time coordinates themselves. 

We should point out that Toro (1965) has already discussed a non-local extension of 
Utiyama’s formalism, but we find ourselves a little puzzled by his treatment and so will 
proceed ab initio. 

The technique of restoring the invariance amounts, partly, to a search for a suitable 
‘covariant derivative’. This comes about in the following way. 

If the theory is invariant under (2), or (3), with the a’,,, constant, this will no longer be 
true if the a’“* are functions of space-time since So( z,q) now has extra terms resulting 
from the derivative acting on the au,.,. Thus from (3) 

60(2u(p) = C,60y = - !” ZEcp(x - x’)A(x,  x - x’) dx’ - i ZiA(x, x - x’)cp(x - x’) dx’. (5) 

If A(x, x’) is a function of x - x’ only, the second term on the right-hand side of (5) is zero. 
This  suggests that we look for an expression, say V u y ,  which reduces to au’p in the absence 
of any compensation and which transforms, under (3)’ like au’p when the a@- are constants. 
Part of the lost invariance will then be restored on replacing au’p by Vucp in the Lagrangian. 
We shall see this explicitly shortly. 

We espect that Vuy will look like 

V,cp(x) = j’ Ku(x, x‘)p(x’) dx’ 

So( v,y(x)) = + 1 A(x, x’) ‘J,y(x’) dx’ 

(6) 

(7) 

and vie shall use the transformation requirement 

t o  determine how the non-local gauge field KN(x, x’) transforms under (3). 
We shall now employ a continuous matrix notation and rewrite (3), (6) and ( 7 )  as 

Comparing this with (9) me see that we must have 

SOK, = [A, &I- 
which is, in form, a familiar result from the Yang-Mills theory. 
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Using this matrix notation, let us check the earlier statements about the invariance under 
the odd derivatives of (2) of the usual scalar field theory. The action for this latter is given 

S = +(a,@afirp-m2@y) 
by 

and the change in the action under (8) is 

where 
SOS = 4{2,g(A + A ) P y  - m23(h + il)rp) 

A(x, x’) A(%’, x). 

Since, in the case where the ah... are constants, il(x, x’) is a function o,f x-x’ only, the 
condition (4) which eliminates the even derivatives from (2) means that A = - A, and so 
S O S  is zero as stated. 

Now, in the general case when the a”... are functions we see that S is no longer invariant 
under (8), partly because of the more complicated transformation of aU(p and partly because 
A is, in general, no longer antisymmetric, which means that ?&I is not now invariant. We 
have found the remedy for the first difficulty--we replace 2 , ~  by 7,rp) and we now give the 
remedy for the second. Let us introduce a matrix iW = &‘ which transforms such that 
@Mrp is invariant. This condition implies that the change in iW under (8) is 

SOlW = - (AM+ :MA). (12) 

S, = + ( ‘ J , ~ ~ J M V U ~ - ~ ~ $ , V ~ )  (13) 

We then consider the theory described by the action 

and clearly now SOSy vanishes. The invariance has been restored by introducing the 
compensating fields K, and M. 

Quite generally, we should expect K, and 114 to be independent, but we wish to go 
further and introduce a restriction which connects them. 

We recognize that iW is rather like a metric which can be used for raising and lowering 
indices or for changing covariant into contravariant quantities. As is usual in theories with a 
metric, we shall require the operations of ‘raising and loqrering’ to commute with covariant 
differentiation. This means that the covariant derivative of must vanish. T o  determine 
what this implies we make use of the fact that +14(p is invariant and constant: then 

V,(+Mq) = 0 
whence, on the assumption that V u  is a distributive operation, 

or 

This is a relation connecting A4 and K,. It is easily checked that it is consistent with (11) 
and 112). 

T@e ‘may in fact develop this formalism a little more, The  quantity +MV,y is also 
invariant and constant; thus 

which implies that 
vv(gMvfi(p) = 0 

7 , K ,  = [K,, K,] = 2K[,K,q. (15) 

3. The action for the gauge field 
Pursuing the analogy with Yang-Mills theory we now enquire for a possible action 

principle describing the K, field itself. T o  this end let us consider the quantity R,, defined 
by 

R,, = &,KVl. 
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Under (8) the change in R,, is given by 

and a suitably invariant action is 

The action principle 

S O R U V  = [A,%l 

si, = Tr(R,,RU”). 

then yields the equations of motion of the free K, field 

K”KuKy + K,K,K’ -2K’KvK, = 0 

which, using (15), can be written in the more conventional way 

4. The coupled equations of motion 

by the variational equations 
The  total action S is equal to AS, + SK and the coupled equations of motion are given 

s s  -- 6S 
- 0  _ -  

SKU 
- 0, 

619 
or  

and 

where we have used (14) and (17) in the variation of S, with respect to xv in order to 
eliminate the quantity SM/SI?,,.  The direct product symbol @ refers to the continuous 
labels. The  trace of the left-hand side of (18) is zero, as can be seen explicitly from the 
left-hand side of (16), and it is easily checked that the trace of the right-hand side of (18) is 
also zero, for consistency, i.e. we have 

7, yfiy = K’K,y = - m2y 

7’ V u K v  = frX(y 8 +MKv + Kvcp @ s~+f) 
(17) 

(18) 

+iVIK,cp = ?@K,,(p = 0. 
For convenience we have here defined the ‘conjugate’ quantity 

I ts  covariant derivative is given by 

by 
Tj = + M .  

y,,F, = v,(+M) = V,qM = +RUM = -FK, 

Ou3U$ = F,K,Ku = - m 2 q .  

(19) 

(20) 

and so, from (17), it satisfies the equation of motion 

With the aid of (19) and (20) it is easy to prove that the right-hand side of (18), which we 
shall denote by hJ,, has a vanishing covariant divergence, i.e. 

vvJJ, = 0. (21) 

5.  Example 

ally we then have for A the expression 

where P, is the momentum operator, The  matrix element of P, is given by 

i ls  an example, let us consider the case when just the first term of (2) exists. Symbolic- 

A = ia’P, ( 2 4  

(xliP,lx’) = a,S(x-x’). 
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Similarly in (22) the quantity a’ is a diagonal operator (or matrix) with elements 

(xjafllx‘) = ap(x)s(x-x’). 

From (11) we find for the corresponding change in K, the form 

6,K, = iaPPDK, - iK,aOP,. (23 
Now, in general, K, is a polynomial in iP, and we require that 6,K, should be a polynomial 
of the same kind and degree, otherwise the theory would not be covariant. This is, in fact, 
just the point of the present paper, for if we choose any term, but the first, of (2) it is 
impossible to satisfy this requirement with K, a polynomial offinite degree. In  other words, 
non-locality is forced upon us eaen if the transformation on y can be expressed in local 
fashion, i.e. with a finite number of derivatives. 

The only exception to this is the example under discussion in the present paragraph. 
T o  see this, let us rewrite (23) using the rule 

+ 
i[Pb, A] = 8,,4 ( N 8,A, A diagonal) 

+ 
where the quantity 8,A has matrix elements 

We have 
t a&, ”- apZDK, + [a4, K,]iP, 

and so, if we choose 

K, = ih;” P,, h;” diagonal 

we see that we can write 6,KU as 

6,K, = i(aD2,hi - hi*8,av)Pv = iS,h;P, 

which is of the same form as K,. 
Since the transformation in question can be generated from space-time translations, 

we expect the formalism to reduce to that given by Kibble (1961) for the same case. To 
check that this is so, let us calculate JV from the condition (14) and (24). Thus, since P, is 
antisymmetric, 

P,h;lU? = Mh;l”Pv 
or 

t 
2,hyllf+h;8,iU?+ i[h;t’, M]Pv = 0. 

A solution to this equation for iW can be found if we take iU? to be diagonal, for then h;” 
and ill commute and 2vA%! 

+ 
2,M. In  this case we have 

ayh;rV = - hiv2,rW or 2, lnkf = - h ~ , 2 , h ~  (25) 
where the quantity hLv is the inverse of h;, i.e. 

hrDh; = 8;. 
We compare equation (25) with equation (6.5) of Kibble (1961) which, allowing for the 

= 2, l n d - g  = 2, In detlhl = -hrv2Ah, 

different notation, yields 
. A  

if all considerations of angular momentum (spin and orbital) are ignored, i.e. the ‘stroke’ 
derivative is just an ordinary derivative. Thus we can identify 

Since we are dealing with only translations, it is not surprising that we do not recover 
the full content of Kibble’s analysis. 

with det (h I as expected. 
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6. The Bianchi identity: conservation laws 
The covariance of the theory under the ‘gauge’ transformations (3) yields 

or 
Tr(S”K,ii- S’AK,) Tr((SUK, - K,S’)il) = 0 

whence, since i1 is an arbitrary function, the ‘Bianchi’ identity 
-S’K,+ K,S’ = V,Su = 0. 

From the equation of motion (18) we then obtain the ‘conservation’ law (21). 
From this non-local law we can derive local conservation laws. As an example we 

consider the free-field scalar theory. In  this case K, is just iP,, and we have explicitly for 
J,  the expression 

J V ( x ,  x’) = +( (P(x )S~~(X ’ )  - ~,(P(x)(P(x’)}. 

Equation (21) now reads 
( S Y +  8:)Jv(x, x’) = 0 

and this can be verified directly using the equations of motion for 9. Local conservation 
laws can be derived from equations like (26) by putting x equal to x’. Thus for any operator 
A we have 

which equations define the symbol ( ). Similar considerations to these occur in the work 
of Green (1949) and Born (1949) on the statistical matrix and the theory of reciprocity. 

J’ is antisymmetric and so (J’) vanishes. However, we can obtain non-trivial results by 
first multiplying by powers of Pv. Thus for the symmetric quantity 

J U V  = i[pfl, J b ] +  = j f i v  
the bracket [ ] + signifying the anticommutator, we have 

Explicitly written out 
a v ( J u v )  = 0. 

7 -  
( J U V )  = - - % c p ~ u  a y y  

h 

where y9cp (PLY$- 2hpcp. Thus J P v  is symmetric on the tensor indices. It is one of a 
class of conserved tensors discussed by Kibble (1965) and differs from the usual canonical 
energy-momentum tensor by an explicit divergence, yielding the same integrated total 
energy and momentum. 

The reason why we do not obtain the actual canonical tensor is partly because we have 
treated surface terms in a very cavalier way. Assumption (14) is partly equivalent to 
throwing away a divergence in the integrand of the action. This is best appreciated in the 
free-field case, K, = P, and :M = 1, ?hen (14) is equivalent to the statement that the 
momentum operator is antisymmetric, P , = - P,, and can act either forwards or backwards 
(see Dirac 1947, $22). The  other, related and more basic, reason is our neglect of angular 
momentum, as mentioned in the previous paragraph. We refer again to the free-field scalar 
case, The  standard method of finding the energy momentum tensor is to write the theory in 
curvilinear coordinates, i.e. 

S = 4 / (‘pllu’pI”* - m2’p2)2/ -g d4x 
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and then to use the identification 

where g,, is the curvilinear metric and g = detjlg,,[. The  usual canonical energy 
momentum tensor? is obtained from Tu" by replacing g,, by T,, = diag( - 1, - 1, - 1, 1). 
Now, by throwing away a divergence, the action (27) is equivalent to S', where 

S' = -&~(rpq?~+m2q2) d - g d 4 x .  

Varying S' with respect to g,, still yields the same Tflv. However, in the non-local 
theory considered in the present paper, since we do not have the full geometric interpreta- 
tion in terms of a space with metric g,,, we should not expect the action analogous to S', 
i.e. - &(yKPK,y + m2qcp), to yield the canonical tensor on suitable variation. We might 
expect, and indeed we do find, that the tensor actually obtained gives the same integrated 
energy-momentum vector, since it is this latter which generates translations and these are 
included in our theory, we hope correctly. 

If we pursue the procedure of multiplying by powers of P" in order to derive other 
conservation laws, it is reasonably clear that we shall obtain tensors of the form 

c) 
Q ( m ) ( n ) v  = a ( m ) y a v ; ( n ) g  

avQ(m) (n )v  = 0. 

These tensors are of the general type 
c) 

'31 2"Y 2 

where y1 and 'pz are any solutions of the Klein-Gordon equation. 

momentum. Presumably it gives the same integrated quantities as the tensor 
We attribute the non-appearance of Steudel's tensor Sggv to our neglect of angular 

c f * * c )  

$ 9 2  a y  aa aflq.:: 

7. Introduction of an internal symmetry 
An interesting situation arises if we extend the previous calculation to cover the case 

when rp belongs to some representation of an internal symmetry group. All that is necessary 
is to add a discrete internal index to the continuous space-time one. The fundamental 
equations will then be unchanged in form. Following the standard procedure (e.g. Ctiyama 
1956), we shall write 

A = AiTf ,  [TI, Tj] = f:Tk 
where the T i  are the generators of the internal Lie groups. For generality we have in mind 
the GL(n, C) and U(n) groups. 

For the change in Kfi we find from (1 1) the expression 

6,Ku = [AtT', K,]. 
In  contrast to the usual situation it is not possible, in general, to expand S,K, also in terms 
of just the generators for, if we do write 

we find 

p Canonical only in the scalar field case. 
$ This has been confirmed. 
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where the curly brackets stand for the anti-commutator. Normally, i.e. in the local case, the 
second term on the right-hand side of (29) is proportional to the generators, but not so 
here since A, and KBj are (continuous) matrices. Thus, in general, S,K, is not a linear 
combination of generators, which means that the formalism is not consistent, i.e. covariant. 
An exception is when 'p belongs to the defining (fundamental) representation of the group 
for. in this remesentation. the generators actuallv do form a comdete set. In  this case the 
introduced giuge field belongs To the regular rep;esentation of the' group (e.g. Glashow and 
Gell-Mann 1961). 

When (2 belongs to a general representation a suitable complete set is provided by the 
irreducible and symmetrized products of the generators, the largest product being of [ J ]  
generators, where [ J ]  is the dimension of the representation to which belongs (the 'J'  
representation, J standing for the complete set of quantum numbers defining the representa- 
tion). 

In  general, all these symmetrized products will be needed for K,. Thus, if as suggested 
by (29), we add a term proportional to (Tf, Tj}  to (28), then the new S,K, will contain a 
symmetrized product of three generators and so on. 

Algebraically these products are a bit cumbersome and a more convenient technique is 
provided by some Clebsch-Gordan analysis. Thus we could employ the quantities u i k )  

introduced? by Racah (195 1) which are, essentially, operators in 'angular momentum space' 
with matrix elements given by a 3j symbol, i.e. 

These matrices form a complete set for (2j+ 1)-square matrices, in particular for the 
generators of U(2j+1) in the defining representation, as Racah noted. The  complete 
algebra of the u i k )  is known in terms of Racah coefficients, and all we have to do is to 
expand Ti and K, in terms of the ujlk), j being given by 2j+ 1 = [J] .  Another possibility 
would be to generalize the ubk) (i.e. the 3j symbols) to the internal group in question (see 
Wigner 1938). Then these generalized 3j symbols, 

would again span the space of (2j+l)-square matrices if 2 j + l  = [J] .  I n  particular, the 
generators Ti are obtained when the K representation is the regular one R, i.e.$ 

We should then need to expand only K, in terms of the UT) .  
This method has the advantage of explicitly showing the symmetry group content of the 

gauge field K,. For U(2),  the original Yang-Mills group, these two methods coincide. The  
details will be presented at another time. 

The type of interaction that we should obtain was, of course, obvious from the start, 
for examDle 

8. Conclusion 
When we try to extend the Yang-Mills gauge theory to the invariance groups responsible 

for the conservation of Zilch-like tensors, we are forced immediately into a discussion of 
non-local field theory, the physical import of which is, at present, somewhat hazy$. Further, 
our theory is incomplete since only space-time translations are considered. 

t We have retained Racah's notation. Really we ought to write u:~.. 
f: If the unit matrix is included amongst Ti ,  then we also need 
5 It should be stated here that Fairlie's (1965) discussion of Zilch shows that non-locality comes in 

CC 1. 

somewhere. 
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Instead of considering odd multiples of P,: i.e. space-time transformation generators, 
we could apply the Yang-Mills trick to invariance groups whose generators are products 
of the generators of internal symmetry groups. Thus, for the case of the homogeneous 
Lorentz group, the generalized covariant derivative for a field transforming according to the 
( j ,  0) representation, say, would take the form 

(30) 
z (4fk) J j j (i...k) a,+aa,J,+a, I k +  ...+ a, Ji ... Jk 

2 1 - 1  factors 

where the J ,  are the usual angular momentum matrices. The second term in (30) represents 
the gravitational field (spin 2). The  other terms presumably indicate an interaction with 
fields of increasing spin, up to a maximum of 2j. Of course, we should expect to have a 
covariant derivative like (30) if we had included angular momentum right from the begin- 
ning. The necessity for such a form is apparent from the discussion of $ 7 .  
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